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Droplet formation by rapid expansion of a liquid
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Molecular dynamics of two- and three-dimensional liquids undergoing a homogeneous adiabatic expansion
provides a direct numerical simulation of the atomization process. The Lennard-Jones potential is used with
different force cutoff distances; the cluster distributions do not depend strongly on the cutoff parameter.
Expansion rates, scaled by the natural molecular time unit~about a picosecond!, are investigated from unity
down to 0.01; over this range the mean droplet size follows the scaling behavior of an energy balance model
which minimizes the sum of kinetic plus surface energy. A second model which equates the elastic stored
energy to the surface energy gives better agreement with the simulation results. The simulation results indicate
that both the mean and the maximum droplet size have a power-law dependence upon the expansion rate; the
exponents are22d/3 ~mean! and2d/2 ~maximum!, whered is the dimensionality. The mean does not show
a dependence upon the system size, whereas the maximum does increase with system size, and furthermore, its
exponent increases with an increase in the force cutoff distance. A mean droplet size of 2.8/h2, whereh is the
expansion rate, describes our high-density three-dimensional simulation results, and this relation is also close
to experimental results from the free-jet expansion of liquid helium. Thus, one relation spans a cluster size
range from one atom to over 40 million atoms. The structure and temperature of the atomic clusters are
described.@S1063-651X~99!07406-1#

PACS number~s!: 68.10.Cr, 05.70.Ln, 02.70.Ns, 36.40.Qv
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I. INTRODUCTION

Atomization of a diesel fuel jet occurs over microseco
time scales~transit time through the orifice! and over sub-
millimeter distances~orifice diameter of a few hundred m
crons!. The breakup of the liquid jet may depend upon ca
tation and does involve the creation of a new liquid surfa
area~formation of droplets from the bulk liquid!; neither of
these effects is well described by continuum models of fl
dynamics. In order to obtain a direct numerical simulation
the atomization process, the method of molecular dynam
~MD! has been selected. MD assumes classical dynamics
a known potential energy function between atoms, fr
which one then directly computes the atomic motion. O
disadvantage of simulations at the atomic scale is their sm
size and short time scale. Using the atomic mass, size,
the potential energy well depth, the natural time scale
about one picosecond~the numerical time step is a femtose
ond!. Thus, an MD simulation at nanoscales~nanometers and
nanoseconds! represents a huge task, and simulations at
microscale is a task for future computer hardware. Theref
at this time we do not simulate the complete fuel jet break
but instead use MD to investigate the rapid, homogene
adiabatic expansion of a liquid and follow the expans
process into the formation of clusters~i.e., droplets!.

The problem configuration in this work is the rapid e
pansion of a liquid in a system with periodic boundaries
each direction~both two- and three-dimensional systems a
examined!. From the simulation results we obtain statistic

*Electronic address: ashurs@ca.sandia.gov
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information about the atomic clusters. We start with
Lennard-Jones fluid in equilibrium in the liquid phase~the
temperature is near, or above, the critical temperature,
the density is near the triple point value!. At time zero of the
expansion, every atom is given an impulse proportional to
distance from the origin of the system; the velocity chan
for the x component is given byhx, whereh is the initial
strain rate, and the other components byhy andhz ~in three
dimensions!. The system periodic length develops in tim
like L(t)5L0(11ht), where L0 is the initial periodic
length, and the periodic boundary velocity ishL0 ~which
remains constant throughout the simulation!. The expanding
liquid cools down, and temperatures approach the triple p
value. As the system expands and doubles and triples
linear extent, there is a rapid change in the number of ato
clusters. At the instant of examination, we define a cluste
be all atoms which are within a selected distance of at le
one other atom. The selected distance corresponds to
location of the minimum force, that is, where the force is t
most attractive, beyond which the attractive force diminish
to zero. After the periodic lengthL of the system is more
than four times its initial value, further change in the numb
of clusters is a slow one, so that at some larger expan
ratio, we stop the simulation and gather information ab
the clusters. The larger clusters are hotter than the sm
ones, and it is expected that they would continue to eva
rate until the whole system changes into a gaseous phase~but
we do not simulate that aspect of the problem!. The initial
strain rate~normalized by the molecular unit of time, equ
to about one picosecond! has been varied from unity down t
0.0125 in three dimensions and down to 0.05 in two dim
sions. The number of atomic clusters depends upon the
6742 ©1999 The American Physical Society
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PRE 59 6743DROPLET FORMATION BY RAPID EXPANSION OF A LIQUID
tial strain rate, being larger with larger strain rates. This
reasonable, because a strain rate a little above unity
enough impulse to separate a pair of atoms connected b
Lennard-Jones potential.

Our MD simulations first repeat the work by Holian an
Grady @1#, in which two-dimensional systems were exam
ined and compared with the energy balance model of Gr
@2#. Grady had proposed a model in which the local exp
sion velocity provides the energy to create a free surf
within the bulk liquid, that is, the local kinetic energy from
the expansion provides the energy needed to break the b
between liquid atoms, and thus allow the formation of a l
uid surface. As the expansion rate decreases, there wi
less energy available unless the domain size increases
thus lower expansion rates will create larger drople
Grady’s model results in the scaling of size~in number of
atoms,m! versus expansion rateh, asm;h22d/3, whered is
the number of space dimensions. Thus, the droplet size
scale ash24/3 in two dimensions and ash22 in three dimen-
sions. Holian and Grady did find approximate agreem
with this model in their two-dimensional simulation resu
using a modified Lennard-Jones potential. We extend
work by using longer-range Lennard-Jones potentials. M
recently, Toxvaerd @3# has examined two- and three
dimensional systems and compared different procedures
establishing the expansion. Both of these previous stu
found a bimodal distribution for the cumulative number
clusters versus the size of the clusters. These distribut
depend upon the average cluster size~one exponential term!
and the number of monomers~the second exponential term!.
Our current simulations yield the same bimodal distributio
However, these distributions are also found in the equi
rium fluid structure, and so by themselves do not indic
that fragmentation has occurred@3#. Earlier work by Blink
and Hoover@4#, in which two-dimensional heated liquid
were allowed to expand into a vacuum after the removal o
confining wall, also suggested an agreement with the Gr
model.

In the next section we present two continuum models
fragmentation, Grady’s and a strain energy one. This is
lowed by a description of the MD procedure and our tw
dimensional results, which is then followed by our thre
dimensional results, and a comparison with experime
results.

II. CONTINUUM MODELS OF FRAGMENTATION

We present two continuum models of fragmentati
which include estimates of the surface energy based on
atomistic nature of the potential energy at the cluster surfa
The first model follows Grady’s idea of an equilibrium ba
ance between the expansion kinetic energy and the drop
face energy@2#. The expansion kinetic energy per unit ma
is @d/(d12)#R2h2/2, where R is the radius of the
d-dimensional droplet@1#. The surface potential energy pe
unit mass isdgr c /R, whereg is the surface energy per un
mass andr c is the thickness of the shell of broken bond
In terms of the surface to volume ratio,S5d/R, the minimi-
zation of the sum of these two energies yields a drop
radius of
s
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R5S ~d12!r cg

h2 D 1/3

. ~1!

We now must estimate the number of broken bonds at
droplet surface. In the dense state the number of nea
neighbors is equal tod(d11) and the number of broken
bonds may be half of the nearest neighbors or as few as
d neighbors~cleave along â111& plane in three dimension
and along the line of close-packed atoms in a tw
dimensional hexagon crystal!. We assume the smaller est
mate and let the surface energy term beg5de/2m. This
estimate does not have any temperature or density de
dence, and thus it is meant for low-temperature, dense
uids. We also assume that the droplet density is close to
original density and thatr c;s. This yields the number of
atoms in the droplet asm55.9/h4/3 in two dimensions and
m527/h2 in three dimensions. These numerical estima
are four and ten times larger than our simulation results to
given below. If we had not minimized the sum of the ene
gies but had just equated them instead, we would obtain
even larger estimate, larger by a factor of 2d/3.

The second model of fragmentation does not minimize
expansion plus the surface energy but just converts the e
tic potential energyFelastic, stored up as the system expan
from its initial state into surface energyFsurface, required to
break bonds and form free surfaces. Under homogene
adiabatic expansion at linear strain rateh5d(es)/dt, con-
densed matter~either fluid or solid! will fragment when
Felastic5Fsurface. For simplicity, consider that the materia
fragments into average-sized cubes in 3D~squares in 2D! of
side lengthL after attaining a critical linear strain in timet of

es5ht5L/L021, ~2!

wherees is the strain and the volumetric strain ind dimen-
sions isdes . The stored elastic potential energy in the av
age fragment of massM is

Felastic5
1
2 B0L0

d~des!
2, ~3!

whereB05r0c0
2 is the bulk modulus,r05M /L0

d is the initial
density, andc0 is the bulk-wave speed. The surface potent
energy is

Fsurface5r2dLd21r 0g, ~4!

wherer5M /Ld is the final density of the average fragme
with surface area 2dLd21, r 0 is the equilibrium bond length
~the skin depth of broken bonds at the surface!, and g
5de/2m is the surface energy per unit mass; the bond
ergy ise and the atomic mass ism. Only half the energy per
broken bond at the surface is associated with the given f
ment, and there ared missing neighbors at each surfac
atom. At the critical fragmentation timet, Felastic5Fsurface,
so that

L~hc0t !252r 0e/m. ~5!

Notice that the dimensionality factors have vanished. W
now suppose thatt is the time it takes for a bulk sound wav
to cross the distanceL of the fragment—a communicatio
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6744 PRE 59WM. T. ASHURST AND BRAD LEE HOLIAN
time, or event horizon, between density fluctuations that
mogeneously nucleate the fragmentation process; that iL
5c0t. Hence,

L3h252r 0e/m. ~6!

Consequently, the average fragment size decreases wit
creasing strain rate by the22/3 power, regardless of dimen
sionality:

L5h22/3~2r 0e/m!1/3. ~7!

As long as the critical strain to fragmentation is not too lar
~that is, the strain is small compared to unity so thatr'r0!,
the average fragment mass is then given by

M;r0h22d/3~2r 0e/m!d/3. ~8!

In Lennard-Jones units (s,e,m), wherer 0521/6s, this be-
comes M527d/18r0 /h2d/3. In 2D, r050.75 and M
51.3/h4/3; in 3D, r050.85 andM51.9/h2. These elastic
energy estimates are much closer to our simulation result
two dimensions we have agreement with the long-ra
Lennard-Jones results~force cutoff at 2.5 and 4s! and in
three dimensions the estimate is about 70% of the simula
results. Replacing the cubical shape assumption wit
spherical one results in reducing these estimates by a fa
of p/4 in 2D and byp/6 in 3D, but even these values are
fair agreement with the simulation results. In the seco
model, the available energy per unit mass is larger than
the kinetic energy-balance model, and with more energy
mass available, there can be more surface atoms cre
hence, smaller clusters are formed in the elastic ene
balance model. Two assumptions required in the continu
models are the surface shape and the number of mis
bonds that surface atoms have in comparison to the inte
atoms. From the cluster simulation results we observe
surface shape, and radius of gyration, change their chara
over the range of examined expansion rates. Hence, w
not claim that the modeling assumptions used above ar
be taken as a detailed picture of actual clusters at spe
expansion rates.

III. MD PROCEDURE AND TWO-DIMENSIONAL
RESULTS

While our future interest is the atomization in a fuel j
like that used in a diesel engine, we have focused this w
on the much simpler problem of a homogeneous expan
of a liquid into a collection of droplets surrounded by its ow
vapor. Thus we can examine the atomization process
very simple configuration and obtain guidance about poss
behavior in the inhomogeneous fuel jet configuration.

Following Holian and Grady@1#, we use periodic bound
ary conditions in the molecular-dynamics simulations. T
use of periodic boundaries reduces the dependence upo
number of atoms used in the simulation. A simulation o
periodic system in equilibrium maintains all the atomic c
ordinates within the range of (0,L) by adding or subtracting
the system edge lengthL whenever an atom coordinate e
ceeds this range. To simulate an expanding system,
atomic velocity must also be adjusted when the atom cro
a periodic boundary. As in the previous work, we define
-
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linear expansion rate ash. The expansion rateh is constant
throughout a particular simulation and the periodic dom
edge length grows likeL(t)5L0(11ht). At the start of the
expansion process—time zero—the velocity of each atom
given an impulse equal to its distance from the system orig
Thus, the atom velocity at that instant is enhanced byhx,
hy, and in three dimensions byhz. The periodic boundary
velocity is thus equal tohL0 and remains constant through
out the simulation. The boundary velocity at the origin
considered to be zero, and so the jump velocity across
system equalshL0 in each coordinate direction. Henc
when the atomic location is adjusted because of a bound
crossing, its velocity corresponding to that coordinate dir
tion is also adjusted by adding or subtractinghL0 . We have
only used systems with equal values ofh and L0 for all
coordinate directions.~Toxvaerd@3# has investigated the us
of this initial impulse method by comparing with systems
which the boundary confinement is just moved at a fix
rate. When the expansion rate is small compared to the t
required for sound waves to communicate from the bound
to the interior of the system, he finds that the initial impul
method is an efficient way to achieve a homogeneous exp
sion.!

We use the pairwise-additive Lennard-Jones potential
representative interaction between molecules. While not
exact potential of any material, it does exhibit the transiti
between the liquid and gaseous phases, which is the im
tant feature in the atomization process. Thus, droplet sur
tension will be an outcome of the simulations. The Lenna
Jones~LJ! potential energy is

f~r !54e@~s/r !122~s/r !6#. ~9!

The value of the minimum energy is2e, which occurs at
r 0521/6s. This is also the location where the force chang
from repulsive to attractive. The force between two atoms
given by the negative gradient of their potential energy,f5
2“f(r ). The atomic positions are advanced using t
Stoermer-Verlet@5# time-centered finite-difference equatio

r ~ t1dt !52r ~ t !2r ~ t2dt !1f~ t !dt2/m1O~dt4!, ~10!

and the time-centered velocity is found from@r (t1dt)
2r (t2dt)#/(2dt); typical time-step values aredt50.01t0

and 0.004t0 , wheret05sAm/e is the LJ unit of time. The
harmonic frequency associated with the force at the loca
r 0 is the fundamental frequency obtained frommv0

2r 0
2

5r 0
2f9(r 0)572e. This frequency isv0t057.56. The poten-

tial inflection point is the minimum force location, beyon
which the attractive force diminishes with increasing d
tance. The minimum force occurs at (26/7)1/6s;1.24s
;1.10r 0 . The force interaction is truncated at a finite di
tance in order to reduce the computational work in calcu
ing the atomic motion. A popular force cutoff distance
2.5s. In addition to truncating the force interaction, the p
tential is also shifted so that it is exactly zero beyond
cutoff distance. This truncation and shifting affects the ph
diagram of the system. For example, in three dimensions,
full Lennard-Jones potential has a critical point value tha
estimated to beT51.316e/k, whereas truncation of the po
tential to 2.5s reduces the critical temperature to 1.085~see
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Smit @6# and Johnsonet al. @7#!. In two dimensions, the full
Lennard-Jones potential has a critical density of 0.355 an
critical temperature of 0.515, but when the potential is tru
cated at 2.5s and the potential is shifted to be zero at t
cutoff, then the critical temperature is reduced to 0.459 wh
the density does not change~Smit and Frenkel@8#!. The es-
timated triple point temperature is 0.41~2D! and 0.69~3D!;
units of e/k will be used in the following.

Holian and Grady not only truncated the Lennard-Jo
potential, but they also changed its shape between the m
mum force location and a cutoff location by using a cub
spline function. In this way they impose the condition th
the potential goes smoothly to zero at the cutoff distan
1.74s @see Eq.~A5! in Holian and Ravelo@9##. The effect of
this modification upon the phase diagram is not known.
compare simulations using their potential with simulatio
using the LJ potential truncated at 2, 2.5, and 4s; we do find
some small differences in the cluster behavior.

We now present our two-dimensional results. Using
same Lennard-Jones/cubic potential~LJ/cubic! as Holian and
Grady, as well as the same number of atoms (N54200), we
examine the range of linear strain rate from 0.0535 to 0.8
using a time step of 0.01t0 . A snapshot of the initial liquid
configuration is given in Fig. 1 and the resulting cluste
formed by different expansion rates are shown in Figs. 2
~our Fig. 3 compares well with Fig. 4 in Holian and Grad
they give the volume strain rate, which is twice the line
value in 2D!. The cluster distributions are determined wh
the bulk density equals 0.175~a linear expansion of 2.07
from the initial density of 0.75!. A cluster is composed of al
those atoms which are connected to at least one other a
by a prescribed distance, namely, a bond length corresp
ing to the minimum force distance,r c51.24s. The selection
of this distance can be considered to be following the gu
ance of the Lindemann melting law; that is, when the ro
mean-square displacement of the atomic motion excee
small distance compared to the nearest-neighbor separa
a solid is likely to melt@10#. ~We note here that use of th
force cutoff distance to determine the clusters yields res
which vary with the cutoff distance, whereas using the mi

FIG. 1. An initial two-dimensional liquid configuration with
reduced density of 0.75 and a reduced temperature of 0.6; Lenn
Jones potential with a force cutoff at 2s.
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mum force distance yields results which have little dep
dence upon the cutoff distance.!

Holian and Grady obtained distributions of cluster si
which are bimodal exponentials:

C~n!5E
n

`

dn8S~n8!5Nme2n1Nce
2n/m, ~11!

wheren is the number of atoms in the cluster,C(n) is the
cumulative number of clusters of size greater thann atoms,
S(n) is the spectral distribution, or number of clusters of s
n, Nm is the number of monomers,Nc is the number of
clusters, andm is the average number of atoms in a clust
Excluding the monomers from consideration, then t
straightforward determination of the average number of
oms in the clusters is given bym5(N2Nm)/Nc . This aver-
age number includes the contributions from the small cl
ters, that is, the dimers, trimers, and so forth, which are a
determined by the monomer distribution. Therefore, Hol
and Grady determine the average cluster sizem by examin-

rd-
FIG. 2. Clusters formed by expanding in 2D at the rateh

50.01 until the domain size has doubled.

FIG. 3. Clusters formed by expanding in 2D at the rateh
50.1 until the domain size has doubled.
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6746 PRE 59WM. T. ASHURST AND BRAD LEE HOLIAN
ing the distribution and selecting a value ofm which allows
a match with the results in the region beyond the influence
the monomer distribution. We use

C~n!5Nme2n1
N2Nm

m
e2n/m, ~12!

where the number of atoms that are in clusters isN2Nm ,
andm is the average cluster size as determined by fitting
distribution. Typical cumulative distributions are given
Fig. 5.

Of interest is the dependence ofm upon the potential, the
dimensionality, and the amount of expansion. From
Grady model of converting expansion kinetic energy in
surface energy, we have the concept that the average cl
size will have a power-law dependence upon the expan
rate, namely that ind dimensions the average cluster sizem
will be given bym}h22d/3. We also examine the maximum
cluster size and its dependence upon the expansion

FIG. 4. Clusters formed by expanding in 2D at the rateh51
until the domain size has doubled.

FIG. 5. 2D cluster distribution with expansion rateh50.107,
using the LJ/cubic potential. Three realizations are shown al
with the estimated fit to the mean result~dashed line!. Notice that
the maximum cluster size ranges from 80 to 120 atoms.
f

e

e

ter
on

te.

From the cumulative distribution we estimate the maximu
cluster size by settingC(nmax)51, and assuming that th
monomer contribution is zero, we have an approximation
the maximum cluster size as

nmax5m ln@~N2Nm!/m#'m ln~N/m!, ~13!

where in the last approximation the monomers are igno
andNf is replaced byN.

We now describe the two-dimensional results using d
ferent force laws and different force cutoff distances. T
initial equilibrium state is created fromN54200 atoms on a
regular lattice of density 0.75~near the triple point value!
with randomly drawn velocity components; enforcement
the desired temperature of 0.6~above the critical tempera
ture! is achieved by velocity rescaling during an equilibr
tion time of 10t0 prior to expansion. Different realization
are created by changing the random number seed for
velocity selection. Three realizations have been used
most conditions~and checked with five realizations at lo
expansion rate!.

We find that the average cluster size does change with
force cutoff distance; see Fig. 6. The shortest cutoff,
LJ/cubic with r cut51.74s, yields the lowest exponent,m
51.35/h1.16 ~indicated by the short dashed line!. The
Lennard-Jones potential withr cut52s gives m51.26/h1.2

~dotted line!, while r cut52.5s givesm51.3/h1.3, but a fur-
ther increase inr cut to 4s does not cause a further chang
~bold dashed line!. The maximum cluster size, as observed
five realizations using the LJ potential truncated at 2.5s, can
be approximated by 10/h, but as discussed below, we suspe
that the maximum cluster size is restricted by the finite s
tem size when the expansion rate is small.

Based on these 4200-atom two-dimensional results,
conclude that the range of the force has a small effe
namely, increasing the range also increases the expone
average cluster-size dependence upon the expansion
The two larger cutoffs with the LJ potential produce resu
which agree with the Grady model of cluster-size variati
with expansion rate, namely that the average cluster size

g

FIG. 6. 2D mean cluster size,m dependence upon expansio
rate,h, and upon the potential: LJ/cubic~L!, LJ truncated at 2s
~1!, at 2.5s ~h! and at 4s ~3!.
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have a dependence likeh24/3 in two dimensions. The trun
cation of force in the Lennard-Jones cases causes a fi
jump in the force at the cutoff location. This force jump do
not occur in the LJ/cubic model, and since its results ag
with the trend of the LJ results, we conclude that the fo
jump is not a serious blemish in the dynamics.

IV. THREE-DIMENSIONAL MD CLUSTER RESULTS

Three system sizes have been used in three dimension
N54000, 32 000, and 256 000 atoms; they will be denoted
4, 32, and 256 K. In all systems the maximum expansion
is h52 and the minimum values are 0.125~4 K!, 0.0125~32
K!, and 0.05~256 K!. Computational cost restricted the min
mum expansion rate in the largest system while the crea
of too few clusters restricted the minimum rate in the sma
systems. Five realizations were created at each expan
rate value. Most of the simulations had an initial density
0.85~triple point! and an initial temperature of 1.4~the criti-
cal temperature is estimated to be 1.085 when the potent
truncated at 2.5s and the potential is also shifted to be e
actly zero beyond the force cutoff; see Smit@6#!. A few
simulations have also been made with a force cutoff ofs,
which has a critical temperature of 1.246. The full poten
critical temperature is 1.316, and the estimated triple po
temperature is 0.69@7#. The time step is 0.004t0 .

We observe that the expansion changes the average
tential energy, with diminishing change as the expansion
becomes small. The initial liquid state has a potential ene
which is negative~from 25.24 at T50.7 to 24.28 at T
51.7!, reflecting the many neighbors which are located n
each atom. The expansion process creates fragments, an
atoms near the surface of a fragment will have a poten
energy higher than the initial liquid-state value, becau
these surface atoms now have fewer neighbors. To desc
the change in the average potential energy, we compare
energy when the domain size has expanded to 3L0, to its
initial value, when the domain size isL0 . We find that sys-
tems with initial temperatures of 0.7, 1.4, and 1.7 have
most the same reduced potential energy change with res
to the expansion rate, namely (fL0

2f3L0
)/fL0

'0.8h1/3.
From these simulations the cluster information was

tained at integer increments of the initial domain size,L0 .
Detailed information was studied at domain sizes of 3L0 ,
6L0 , and 13L0 . At 2L0 with low expansion rate, the larges
cluster was essentially equal to the system size. Beyond 3L0 ,
the number of clusters has reached a quasisteady valu
large expansion rate, about two-thirds of the atoms
monomers, and this value is almost constant over the ex
sion duration. On the other hand, at low expansion rate,
number of monomers grows with the increasing domain s
at a rate independent of the strain rate. At 6L0 the number of
monomers is 21% of the total number of atoms; at 13L0 , the
fraction of atoms that are monomers has grown to ab
one-third. As discussed by Toxvaerd@3#, at very small ex-
pansion rates, the adiabatic expansion becomes a rever
one, and the structure of the system is that of the equilibr
state. However, we note that an expansion of a two-ph
system would produce monomers at a rate proportional to
cube of domain length, which is far larger than what w
observe in our simulations.
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The five realizations at each expansion rate are poo
together to obtain a mean and standard deviation of the n
ber of clusters at each possible cluster size. In each rea
tion, linear interpolation is used between the actual clus
of that realization to generate information at integer values
cluster size. To determine the mean cluster sizem at a given
expansion rate, a plot of the mean cumulative cluster dis
bution is made along with the functionbe2n/m. The values
of b andm are adjusted to match the distribution in the clu
ter size region just beyond the tail of the obvious monom
distribution. Note that extension of these fits on the line
log plot does not always coincide with the observed me
value of the maximum cluster size.

Figure 7 presents the mean cluster size determined f
the graphical procedure described above; there is no obv
dependence upon the system size. The 21 values in F
have a relative rms error of 0.17 with respect tom52.6/h2

~dashed line!. The initial temperature of these results is 1
and to determine a possible temperature influence, sim
tions with initial temperatures of 1.7 and 0.7 were also g
erated using a 32 K system. Single run realizations produ
mean cluster sizes that are in agreement with those show
Fig. 7. Because the mean cluster size increases with dec
ing expansion rate, we suspect that the lower expansion r
produce results which are less reliable than those produ
with the higher rates~within a system of the same size!.

Using the 32 K system size, other initial densities we
examined, with 0.025<h<1. Simulations with an initial
density of 0.94 are described bym52.8/h2 ~with relative
error of 0.07!. Thus, as in the continuum models, the prefa
tors appear to have a linear density dependence. With lo
initial densities of 0.76 and 0.68, the mean cluster size
given by m52.2/h1.87 and by 2.0/h1.71. Using an exponent
of 2 with these two densities produces a much larger e
than that observed in the two higher density cases. We
that these low-density cases are sensitive to the force cu
value. By changing the cutoff from 2.5s to 4s, the 0.68
density result changes from 2.0/h1.71 to m52.2/h1.85, an in-
crease of 10% in both the exponent and the prefactor. T

FIG. 7. The mean cluster size in 3D increases with decrea
expansion rate; the dashed line equals 2.6/h2; these results are
based on five run averages, domain size is 6L0 , and the initial
density is 0.85.
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with even larger cutoff values~as suggested by Meckeet al.
@11#!, these low-density cases may also approach m
closely the expected quadratic dependence upon strain
but, due to the increased computational cost, we have
pursued this issue. At high density, however, a similar
crease in the cutoff distance, with an initial density of 0.8
produces no change in the mean cluster size from that g
above. We conclude that in order to observe the expon
that is predicted by the continuum models, the lower init
densities require a larger force cutoff value than that nee
by the higher initial densities. The numerical prefactor co
stants predicted by the continuum models, with an ini
density of 0.85, are 27~kinetic surface! versus 1.9~elastic
surface with cubical shapes!.

The elastic-surface model and the MD results also ag
with experimental information obtained by Knuth an
Henne. Knuth and Henne@12# have used free-jet expansio
of liquid helium to create liquid fragmentation, and fro
their data they have estimated the mean cluster size
function of the jet diameterd* and the jet sound speeda* ;
these two parameters define a strain rate. Using the G
model ~kinetic surface!, Knuth and Henne determine th
mean cluster size asm5(80p/3)F, whereF5g(d* /a* )2 is
their dimensionless fragmentation parameter andg is the sur-
face tension per unit mass. However, by comparison w
their data, they note that this numerical prefactor is almos
times too large; a prefactor of 3 describes their data over
range of one million to 40 million atoms. This approxima
expression is also consistent with our MD results based
systems with only a quarter of a million atoms in which t
mean cluster size is 104 and less. Using 3F5m52.8/h2, we
compare the two results in Fig. 8. A strong caution must
given with regard to this comparison: the flow-induced str
rates created in the jet are more complex than the unif
expansion rates in the MD simulations; indeed, it is poss
that additional factors as large as 3 could enter into the c
parison given above. To illustrate possible effects of diff
ent volume strain-rate compositions, we have expanded

FIG. 8. Droplet mean size from liquid helium free-jet expe
ments~circles and triangles! and from 3D MD simulations: initial
density of 0.85~stars! and 0.94~filled circles! vs expansion rateh;
the dashed line ism52.8/h2.
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K system withh in two directions and with no expansion i
the third direction. Based on volume strain rate, the expec
mean cluster size would bem52.6/(2h/3)255.85/h2 ~the
density is 0.85 and the force cutoff is 2.5s!; the observed
result is a numerical prefactor which is 20% larger than
expected one.

While the mean cluster size does not show a depende
upon the system size, this is not true for the behavior of
maximum cluster size; we obtain larger values in larger s
tems. The results, with a force cutoff of 2.5s, appear to ex-
hibit a size dependence that can be described by 22/h3/2 for
the 32 K results, with numerical prefactors of 18.5 for the
K and 25.2 for the 256 K results. This exponent value
dependent upon the force cutoff distance. Figure 9 pres
32 K results using a cutoff of 2.5s and 4s, with an initial
density of 0.85. We see that the maximum cluster size
clearly larger at low expansion rates with the use of a lar
force cutoff.

From the cumulative distribution of clusters, it is possib
to estimate the maximum cluster size, using Eq.~13!; this
estimate leads tonmax'm ln(N/m). This logarithmic depen-
dence onN yields a factor of 4 increase between the 4 a
the 256 K results, whereas the actual increase is a m
lower ratio of 1.36. Thus, while the cumulative cluster d
tribution does offer a guide to the maximum cluster-size
pendence upon the expansion rate, the distribution estim
vastly overpredicts the magnitude of theN dependence. The
apparent crossover of the mean cluster size and the m
mum size~dotted and dashed lines in Fig. 9! is probably an
artifact of the finite-system size, as well as the effect of
finite force range upon the maximum cluster size.

In Appendix A, we describe the observed cluster tempe
tures. The results show that the smaller clusters are co
while the larger ones are hotter. In Appendix B, we discu
cluster shapes and show that clusters become more sphe
at lower strain rates. In Appendix C, we discuss the bond
in clusters and show that the larger clusters at low expan
rates exhibit densities near the triple point value.

FIG. 9. The 3D maximum cluster-size dependence upon
force cutoff distance. 32 K results with a cutoff of 2.5s are de-
scribed by 22/h1.5 ~dashed line!, while a larger cutoff of 4s pro-
duces results with a larger exponent, 22/h1.64 ~circles!. These results
are based on five run averages. Error bars correspond to one
dard deviation. The dotted line is the mean cluster size from Fig
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V. CONCLUSIONS

A liquid will flow under the action of an applied force
and a liquid cannot sustain a tensile load for a long tim
With these properties, how does a liquid fracture? We h
used molecular-dynamics simulations to study the atom
tion process when a liquid is rapidly expanded into t
gaseous-phase region. We find that as long as modificat
to the interatomic pair potential are restricted to the attrac
region beyond the inflection point, there is minimal effect
the nonequilibrium process of fragmentation in the de
liquid.

Under homogeneous expansion, with linear expans
ratesh ranging over two orders of magnitude, we show th
the average cluster size is given bym5const/h p, where the
exponentp52d/3 in d dimensions appears to agree with tw
simple continuum models: the first model, developed
Grady, minimizes the sum of expansion kinetic energy a
surface energy, and overestimates our simulation results
second model equates the stored elastic energy to the su
energy, and gives more reasonable agreement. In both c
expansion energy goes into creating new liquid surface
that the average size of the clusters decreases when
energy is available.

We observe that the cluster behavior is quasisteady w
the expanding domain in the simulation grows from 3 to
times its initial linear extent. The cumulative number of clu
ters is well described by a bimodal distribution~sum of two
exponentials!. Starting with the largest clusters, the fir
mode governs the average large-cluster size, while the
ond governs the number of monomers. The distributions
based on cluster mass and number of atoms; at low ex
sion rates, a distribution based on cluster diameter~cube root
of mass! appears to provide the same mean cluster size.
have studied the cluster temperature, and find that it
creases gradually with cluster size. At sufficiently low e
pansion rates, we note that the average cluster size begi
approach the maximum size; that is, the distribution
scribes large monodisperse droplets surrounded by va
which could be symptomatic of the beginnings of syste
size limitations to our MD simulations. We have not e
plored below this apparent limit of very slow expansi
rates, but note that the MD results and liquid helium resu
are both well described by an average cluster size of 2.8h2;
the helium results involves clusters which are a hund
times larger than any of the MD clusters.
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APPENDIX A: CLUSTER TEMPERATURE

The translational temperature can be based on either
atom velocities with respect to the mean expansion mo
.
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or, for clusters bigger than monomers, relative to the m
motion of their cluster~the resulting temperatures differ by
few percent!. The temperature defined by all the atoms w
respect to the expansion motion ranges from 0.2~at 6L0 ,
h52! to 0.5 (h50.25); the temperature of the monomers
about 60% of these values~while the fraction of monomers
varies from 0.6N down to 0.2N over thish range!. Thus, the
monomers do not exhibit a very large velocity variatio
about the mean expansion motion; they are quite cold.
atomic velocities (u,v,w) with respect to their cluster mea
velocity are used to define the cluster translational temp
ture using 3(n21)kT5mS(ui

21v i
21wi

2), where the sum-
mation is over then atoms in the cluster, and the factorn
21 reflects that the velocities are with respect to the m
mass motion of the cluster. If there is more than one clus
of a given size in the realization, the temperatures are a
aged. Then these cluster temperatures are gathered ove
five realizations at that expansion rate in order to determin
mean cluster temperature and an estimate of its standard
viation ~see Fig. 10, diamond symbols with error bars!. Be-
cause there are very few large clusters, the deviation of
large cluster temperature is greater than that of the sm
cluster temperature, about 5% compared to 1%.

The largest clusters have temperatures near the tr
point value~estimated to be 0.69! and the smaller clusters ar
much colder, approaching values near 0.35. However,
smaller clusters have a significant amount of rotatio
energy. We define a rotational temperature
Tr5L•L /(knI), whereL is the angular momentum andI is
the moment of inertia of a cluster withn atoms. Figure 10
presents the sum of the rotational and translational temp
ture ~filled circles! along with the estimate given by restric
ing six degrees of freedom in the cluster: 3(n22)kTa

5mS(ui
21v i

21wi
2). The values ofTa are shown by circles

connected with a dashed line in Fig. 10. The estimateTa is
too large when the cluster has fewer than five atoms, and
small for larger clusters. Since the clusters are defined

FIG. 10. 3D cluster temperature in 32 K system ath50.5;
translational temperature~diamond symbols with error bars whic
denote one standard deviation based on five realizations!, transla-
tional plus rotational temperature~filled circles!, and a temperature
estimate based on restricting six degrees of freedom~open circles
connected by a dashed line!.
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their geometric arrangement at the instant of examinat
and not over a finite time interval, then the overprediction
the smallest clusters may reflect cases in which the atoms
undergoing a collision process rather than being bound
gether with a negative total energy. Thus, on the whole,
stricting six degrees of freedom offers a good estimate of
cluster temperature. In the two-dimensional expansion w
of Blink and Hoover@4#, the rotational temperature was e
amined and found to be of insignificant value.

Using a 32 K system, we examine the cluster tempera
in low-density equilibrium systems. A density of 0.031
corresponding to a domain size of 3L0 in an expanding
simulation, was used at two different temperatures: 0.5
1.4. The initial atom locations are on an fcc lattice with ra
dom velocities drawn from a Maxwell-Boltzmann distrib
tion based on the desired temperature. The mean temper
is enforced during the simulation by rescaling all the at
velocities at each time step, over a time period of 200t0 . In
the colder simulation the atoms condense into clusters du
the simulation and the average potential energy continue
decrease with increasing time. We pick a time when
maximum cluster size is similar to that of an expandi
simulation at a low expansion rate. The variation of clus
temperature is similar to the expanding system: the lar
clusters are hotter than the smaller ones. In the equilibr
simulation with a temperature above the critical point, t
average potential energy reaches a constant value early i
simulation, and the number of clusters also reaches a
stant value. The maximum cluster size is much smaller t
the cold case~8 compared to 63!, and these small clusters a
colder than the mean temperature. In this warm system
cluster can maintain its structure if it has low energy~colder
than the mean!, while in the cold system~below the triple
point! the rare larger clusters have more energy than aver

APPENDIX B: CLUSTER SHAPES

Figure 11 presents a projected view of two clusters: o
appears circular and the other elongated. The circular
was created with a low expansion rate (h50.125) and the

FIG. 11. Projected view of two clusters. The larger one has
atoms and was formed with an expansion rate of 0.125, while
smaller one, created byh50.5, has only 56 atoms.
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smaller, elongated cluster by a large rate (h50.5). These
images were formed by filling in cells on a grid if they a
within a certain distance of any atom center in the projec
view. The selected distance is 0.62s ~half of the cluster-
defining distance! and the cell sizes are 0.16 (h50.125) and
0.08s. In addition to these projected views, we also exam
the cluster moments of inertia and compare with other st
ies of equilibrium clusters. Yoshii and Okazaki@13# have
performed molecular-dynamics studies of cluster structur
a Lennard-Jones fluid which is just above its critical te
perature. They used 10 976 atoms with a force cutoff of 4s
and defined the clusters based on the bond length of 1.2s,
as in our work. They examined the cluster structure at d
sities below the critical density, since above the critical de
sity the clusters tend to be connected throughout the peri
domain. The components of the inertia tensor are given
terms likeI xy5S(xi2xcm)(yi2ycm), where the summation
is over then atoms in the cluster, which has a center of ma
at (xcm,ycm,zcm). The radius of gyrationRg is the square
root of the mean-square average distance from the cente
mass,Rg5A(I xx1I yy1I zz)/n. Yoshii and Okazaki presen
the radius of gyration as a function of cluster size and fi
that it has a fractal character. Using the relationRg

D f5n,
wheren is the cluster size andD f is the fractal dimension
determined from a log-log plot of radius versus cluster si
they obtain a value of 2.25~earlier work by Heyes and Mel
rose reports a value of 2.3560.1 @14#!. We find a range of
values: from an exponent of 3.0 whenh50.125 to a value
of 2.15 whenh52. Hence the fractal nature of our cluste
depends upon the rate at which they have formed. Figure
presents the radius of gyration in the case ofh equal to 0.5.
The line indicates thatD f52.5; when the expansion rate
unity, D f52.25 ~not shown, but similar to the results o
Yoshii and Okazaki, except that our cluster-size range
much smaller!.

The changing fractal nature with expansion rate also
fects the distributions of cluster size. The cumulative clus
distributions, which are used to determine the mean clu
size, have been based on cluster mass, that is, the numb

5
e

FIG. 12. Radius of gyration versus cluster size has a fra
character when the expansion rate is larger than 0.125; herh
50.5 and the dashed line indicates a fractal dimension of 2.5;
sults from 32 K system size.
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atoms. At low expansion rates in the MD simulations, a d
tribution based on cluster diameter~cube root of mass! ap-
pears to provide the same mean cluster size as those bas
mass, but, when the expansion rate is larger than 0.25,
the diameter-based distribution does not have any cons
slope region from which a mean size can be selected
discussion of mass- versus diameter-based distribution
given by Holian and Grady@1# and by Grady and Kipp@15#.

Further information about the cluster shape can be fo
by examining the shape of the inertia tensor. We form
complete inertia tensor and then diagonalize the matrix
obtain the eigenvalues. The eigenvalues are arranged in
ordera>b>c; the radius of gyration equalsAa21b21c2.
A rodlike object will havea.b,c and a pancake shape h
a,b.c. We have formed the ratiosb/a and c/a; the first
ratio can be in the range from zero to unity and the sec
ratio from zero to the value of the first ratio. Ath50.5, the
average values of these ratios areb/a;0.7, c/a;0.5; ath
50.125 both ratios have larger values:;0.8 and;0.6.
Thus, at low expansion rate, the clusters exhibit more o
spherical character in comparison to the shapes produce
large expansion rates, where the maximum moment is m
than twice the minimum inertia moment.

APPENDIX C: CLUSTER BONDING

The clusters are defined by the bonds between at
which have a smaller separation distance than the inflec
point of the Lennard-Jones potential, 1.24s. Yoshii and Oka-
zaki @13# find that within a cluster each atom has on avera
a low number of these cluster-defining bonds; about thr
fourths of the atoms have three or fewer of these bonds
our clusters we find similar behavior, but notice that the
bonds account for less than half of the atom potential ene
When we examine all bonds of the atoms within a clus
~separations up to the distance of the force cutoff, 2.5s!, we
find that the number of bonds approaches the numbe
atoms in the small clusters~the maximum number of bond
is about 60 at low expansion rate and 18 at large expan
while over this same expansion range the maximum num
of the cluster-defining bonds changes from 12 to 7!. When
we compare the energy given by all the bonds of an a
~giving half of the potential energy to each atom forming t
bond! with just those bonds defined by atoms within t
same cluster, we obtain an energy difference of only a
percent. Thus, most of the potential binding energy is
tween the atoms within the defined cluster; this would be
intracluster potential energy. Adding the atomic kinetic e
ergy ~with respect to the cluster center-of-mass velocity! to
the intracluster potential energy, we find that almost all cl
ters have a total energy less than zero~see Fig. 13!. At h
50.5, the clusters which have only three or four atoms h
less than 1% of their population with total energy grea
than zero~remember the clusters are defined only by th
geometry at the instant of inspection, and those few clus
with positive energy may represent a collision between
monomer and a smaller cluster, and thus at earlier and
times they may not be counted as the same cluster!. At the
low expansion rate of 0.05 and the cluster size of three, th
are 7% of the clusters with positive energy; the rest of
clusters have negative total energy. And at these low exp
-

on
en
nt
A
is

d
e
o
the

d

a
by
re

s
n

e
e-
In
e
y.
r

of

on
er

m

w
-
e
-

-

e
r
r
rs
a
ter

re
e
n-

sion rates, the very large clusters have a potential ene
value close to the initial liquid state value, implying that th
cluster density is approximately the initial triple point de
sity.

Figure 14 presents distributions of the number of bonds
small clusters formed at large expansion rates and in la
clusters formed at small expansion rates. In accumulating
bonds of each atom, only those with a length of less th
1.61s were considered~this gives a bond energy less tha
20.2e and provides most of the atom potential energy wh
all bond lengths out to a distance of 2.5s are considered!.
The dashed line is the histogram of the number of bo
found in 28 clusters created byh50.5 ~there are a total of

FIG. 13. The average cluster potential~L! and total energy
~solid line! indicate that almost all clusters have a negative to
energy, and thus are likely to remain as a cluster; results from 3
system size in 3D with an expansion rateh50.5. Here the larges
clusters have about half of the initial liquid state potential ener
which is equal to24.5.

FIG. 14. Probability of the number of bonds in a 3D cluster.
large clusters~h50.125, cluster size from 500 to 710, filled circle!
the most probable number of bonds~12! is equal to the number o
nearest neighbors in the liquid state while in small clusters~h
50.5, cluster size from 50 to 72, dashed line! the most likely num-
ber of bonds is only seven; results from 32 K system size.
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1510 atoms in the examined clusters!. These clusters repre
sent the largest cluster size formed at this expansion rate
their most likely number of bonds is about half that of t
initial liquid state value, 7 compared to 12, and only 22%
the atoms have more than nine bonds. At low expansion r
h50.125 ~filled circles!, the most probable number is th
same as the number of nearest neighbors in the liquid s
with 30% of the atoms having fewer than nine bonds~there
are nine clusters in this sample with a total of 5175 atom!.
One reason for the shift in these distributions is the chang
s

nd

f
te,

te

in

the fraction of atoms which are surface atoms with t
change in spherical volume. Packing spheres with diamets
into a volume with radiusR results in the fraction of surface
atoms being equal to 3s/2R. The largest cluster in Fig. 11
has a radius of about 5s, which gives 30% of the atoms a
the surface, and implies that these are the atoms with fe
than nine bonds. The other, smaller cluster in Fig. 11 is
spherical, but using a radius of 2s as representative of its
size, it leads to about 20% interior atoms~and those have
more than nine bonds each!.
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